COMPARATIVE STUDIES OF LATEX OBTAINED OF RUBBER TREE CLONES (*Hevea brasiliensis*) - SERIES IAC 328 – VOTUPORANGA - SP

L. C. S. de Oliveira^{1*}, D. P. de Rosa¹, E. J. de Arruda¹, R. B. da Costa², P. S. Gonçalves³ and Angela Delben⁴

 ¹Farmácia/Programa de Desenvolvimento Local, Universidade Católica Dom Bosco, Campo Grande, MS, C.P. 100, CEP 79.117-900, Brazil
²Biologia/Programa de Desenvolvimento Local, Universidade Católica Dom Bosco, Campo Grande, MS, C.P. 100, CEP 79.117-900, Brazil
³Programa Seringueira, Instituto Agronômico de Campinas, Campinas, SP, C.P. 28, CEP 13.001-970, Brazil
⁴Depto. de Física, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, C.P. 549, CEP 79.070-900, Brazil

Abstract

Membranes of latex extracted of the seringueira tree (*Hevea brasiliensis*), genetically improved by selection and statistics methods, were prepared by air drying a 10 mL suspension of the ammonia in latex 10% (v/v). TG-DTG and DSC curves were used to characterize the membranes. Thermal stability and thermal decomposition of these compounds were analyzed. The results obtained show no differences among latex from different clones.

Keywords: clone, genetic improvement, latex, thermal stability

Introduction

Rubber tree improvement [*Hevea brasiliensis* (Willd ex Adr. de Juss.) Müell. Arg.] is an essential market species due to its wide use in industry. The main cultivation sites in Brazil, are known as 'escape areas'. The plateau region of the state of São Paulo is the most important rubber-producing area in the country [1].

The main goal of the genetic improvement of the *Hevea brasiliensis* productive trees is to obtain more resistant species and to attain harder and more productive trees. This has been achieved with great success, by researchers of the Campinas Agronomic Institute (IAC – Campinas, Brazil) [2–4].

Experimental plantations of three IAC clones and two Asiatic clones were used in the study of the physical and chemical characteristics of the latex products. Charac-

1388–6150/2004/ \$ 20.00 © 2004 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

^{*} Author for correspondence: E-mail: Lincoln@ucdb.br

terization of the quality of latex is important for quantitative evaluation of rubber production [5–7].

Experiment method

Latex was extracted from ten trees of each of five seringueira clones (*Hevea brasiliensis*). 10 mL of concentrated ammonia, were added to 100 mL of latex to avoid the coagulation during the transport [8, 9]. Membranes of latex were prepared by drying the ammonia solution with an air stream [10].

TG-DTG and DSC curves of the membranes of latex of clones: IAC-328, IAC-329, IAC-330 and the matrix references GT 1 and RRIM 600, were obtained using a Shimadzu thermoanalyser system, model TGA-50, with continuous synthetic air flow at a rate of 100 mL min⁻¹, sample mass among 6 and 15 mg, in alumina crucible without cover, a heating rate of 10° C min⁻¹, scanning for TG curves up to 900°C and up to 650°C for DSC curves.

Results and discussion

Table 1 presents temperature ranges, mass losses, attribution and mass of residue for all latex membranes studied. TG and DTG curves are shown in Figs 1 to 4.

Clones/Locations	Temp. range/°C	Mass loss/%	Attribution	Residue/%	
GT1/ Pindorama	27-199	2.029	volatile	2.560	
	199–542	95.407	thermal decomposition		
GT1/ Votuporanga	27-210	1.919	volatile	0.541	
	210-553	97.540	thermal decomposition	0.341	
RRIM 600/ Pindorama	27–196	1.659	volatile	0.529	
	196–552	97.813	thermal decomposition	0.528	
RRIM 600/ Votuporanga	27–228	1.217	volatile	0.112	
	228-539	98.671	thermal decomposition	0.115	
IAC 328/ Votuporanga	27-207	2.273	volatile	0.517	
	207-536	97.210	thermal decomposition	0.317	
IAC 329/ Votuporanga	27-209	2.261	volatile	0.476	
	209-570	97.223	thermal decomposition	omposition 0.476	
IAC 330/ Votuporanga	27–200	1.433	volatile	1.302	
	200–540	96.935	thermal decomposition		

Table 1 Thermal stability and mass loss

All the membranes lost mass in three consecutive steps, beginning at temperatures between 193 and 209°C, with TG and DTG curves showing great similarities, suggest-

J. Therm. Anal. Cal., 75, 2004

Fig. 1 TG curves of: a – GT1-Pindorama, b – GT1-Votuporanga, c – RRIM-600-Pindorama and d – RRIM 600-Votuporanga

Fig. 3 DTG curves of: a – GT1-Pindorama, b – GT1-Votuporanga, c – RRIM-600-Pindorama and d – RRIM-600-Votuporanga

J. Therm. Anal. Cal., 75, 2004

Fig. 4 DTG curves of: a – IAC 328, b – IAC 329 and c – IAC 330

ing that the decomposition mechanism is the same. The end of thermal decomposition occurs at temperatures up to 570°C. The residues are probably ashes [11] or impurities, which were added during the extraction process of the latex in the plantations.

Latex from the GT1 and RRIM 600 Asiatic clones (Figs 1 and 3) grown in Pindorama and Votuporanga and IAC-328, IAC-329, IAC-330 clones (Figs 2 and 4) grown in Votuporanga, exhibited an initial small mass loss attributed to elimination of the volatile compounds, probably ammonia residue [11], followed by three consecutive mass loss, attributed to the thermal decomposition of the membrane.

Table 2 presents temperature ranges, temperature of maximum peak and heat from the DSC curves.

	Broad exotherm			Exothermic peak		
Clones/Locations	Temp. range/°C	Temp. max./°C	Heat/ kJ g ⁻¹	Temp. range/°C	Temp. max./°C	Heat/ kJ g ⁻¹
GT1/Pindorama	228-404	357.43	1.44	404–554	491.05	3.12
GT1/Votuporanga	215-398	357.95	1.77	398-359	485.86	3.14
RRIM 600/Pindorama	222-400	348.69	1.58	400–559	488.31	2.96
RRIM 600/Votuporanga	217-374	335.16	1.11	374–567	484.48	2.27
IAC 328/Votuporanga	235-388	352.21	1.12	410-551	499.94	3.36
IAC 329/Votuporanga	229–400	370.88	1.25	425-535	485.09	2.95
IAC 330/Votuporanga	230-402	386.49	0.970	411-562	478.05	2.49

Table 2 Temperatures ranges, temperature of maximum peak and heat

For the GT1 and RRIM 600 clone (Fig. 5) and the samples IAC-328 (a), IAC-329 (b) and IAC-330 (c) (Fig. 6), the DSC curves exhibited a broad exotherm corresponded the first steps of thermal decomposition, followed by an exothermic peak attrib-

J. Therm. Anal. Cal., 75, 2004

Fig. 5 DSC curves of: a – GT1-Pindorama, b – GT1-Votuporanga, c – RRIM-600-Pindorama and d – RRIM-600-Votuporanga

Fig. 6 DSC curves of: a – IAC-328, b – IAC-329 and c – IAC-330

uted the second and the third steps of the process of the thermal decomposition of membrane, which are all in accordance with the mass losses of the TG and DTG curves.

Concluding remarks

TG-DTG and DSC data for membranes show that latex from clones of series IAC have similar thermal stability to that observed for latex from clones of Asian origin. The same behavior is also observed during thermal decomposition. These information contribute to the establishment of standard of relative quality for these clones.

* * *

The authors acknowledge the Laboratories of Thermal Analysis of the Physical Department of Federal University of Mato Grosso of South (UFMS), Agronomic Institute (IAC) in Campinas, São Paulo State and Dom Bosco Catholic University (UCDB).

J. Therm. Anal. Cal., 75, 2004

499

References

- 1 M. V. Boock, P. de S. Gonçalves, N. Bortoletto and A. L. M. Martins, Pesquisa Agropecuária Brasileira, 30 (1995) 673.
- 2 R. B. Costa, M. D. V. Resende, P. de S. Araújo and N. Bortoletto, Pesquisa Agropecuária Brasileira, 32 (2000) 381.
- 3 P. de S. Gonçalves, O. C. Bataglia, W. R. Santos, A. A. Ortolani, I. Segnin Jr. and E. H. Shikasho, Genetics and Molecular Biology, 21 (1998) 115.
- 4 P. de S. Gonçalves, N. Bortoletto, E. L. Furtado, R. Sambugaor, O. C. Bataglia and A. A. Ortolani, Pesquisa Agropecuária Brasileira, 36 (2001) 589.
- 5 L. C. S. de Oliveira, E. J. de Arruda, R. B. da Costa, P. de S. Gonçalves and A. Delben, Thermochim. Acta, 398 (2003) 259.
- 6 N. Agulló and S. Borrós, J. Therm. Anal. Cal., 67 (2002) 513.
- 7 D. F. Parra and J. R. Matos, J. Therm. Anal. Cal., 67 (2002) 287.
- 8 E. V. Thomas, M. G. Kumaran and R. Kothandaraman, In: Y. Radhakrishna Pilla (Ed.) Handbook of Natural Rubber Production in India. Kottayam, 1st ed., Rubber Research Institute of India, 1980, Chap. 20.
- 9 L. Varghese, N. N. Radhakrishna and M. G. Kumaran, In: P. J. George, C. Kuruvilla Jacob (Ed.), Natural Rubber, Agromanagement and Crop Processing, Kottayam, 1st ed. Rubber Research Institute of India, 2000, Chap. 20.
- 10 L. J. Keddie, Mat. Sci. Eng., 21 (1997) 101.
- 11 H. Cui, J. Yang and Z. Liu, Thermochim. Acta, 333 (1999) 173.